X射線熒光光譜儀(X-ray Fluorescence Spectrometer,簡稱:XRF光譜儀),是一種快速的、非破壞式的物質(zhì)測量方法。
X射線熒光的物理原理
當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發(fā)生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅(qū)逐內(nèi)層軌道的電子,然而這使原子的電子結(jié)構(gòu)不穩(wěn)定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量差異的。因此,物質(zhì)放射出的輻射,這是原子的能量特性。
XRF用X光或其他激發(fā)源照射待分析樣品,樣品中的元素之內(nèi)層電子被擊出后,造成核外電子的躍遷,在被激發(fā)的電子返回基態(tài)的時候,會放射出特征X光;不同的元素會放射出各自的特征X光,具有不同的能量或波長特性。檢測器(Detector)接受這些X光,儀器軟件系統(tǒng)將其轉(zhuǎn)為對應的信號。這一現(xiàn)象廣泛用于元素分析和化學分析,特別是在研究金屬,玻璃,陶瓷和建筑材料,以及在地球化學研究、法醫(yī)學、電子產(chǎn)品進料品管(EURoHS)和考古學等領(lǐng)域,在某種程度上與原子吸收光譜儀互補,減少工廠附設(shè)的品管實驗室之分析人力投入。
X熒光光譜儀(XRF)由激發(fā)源(X射線管)和探測系統(tǒng)構(gòu)成。X射線管產(chǎn)生入射X射線(一次X射線),激發(fā)被測樣品。受激發(fā)的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統(tǒng)測量這些放射出來的二次X射線的能量及數(shù)量。然后,儀器軟件將探測系統(tǒng)所收集到的信息轉(zhuǎn)換成樣品中各種元素的種類及含量。
近年來,X熒光光譜分析在各行業(yè)應用范圍不斷拓展,已成為一種廣泛應用于冶金、地質(zhì)、有色、建材、商檢、環(huán)保、衛(wèi)生等各個領(lǐng)域,特別是在RoHS檢測領(lǐng)域應用得多也廣泛。
大多數(shù)分析元素均可用其進行分析,可分析固體、粉末、熔珠、液體等樣品,分析范圍為Be到U。并且具有分析速度快、測量范圍寬、干擾小的特點。
透射測定
光譜儀的透射率或它的效率可用輔助單色儀裝置來測定。在可見和近紫外實現(xiàn)這些測量沒有任何困難。測量通過第一個單色儀的光通量,緊接著測量通過兩個單色儀的光通量,以這種方式來確定第二個單色儀的透射率。
絕對測量需要知道單色儀的絕對透射率:對于相對測量,以各種波長處的相對單位可以測量透射率。真空紫外線的這些測量有相當大的實驗困難,因此通常使用輔助單色儀。在各種入射角的情況下分別測量衍射光柵的效率。在許多實驗步驟中已成功地避免了校準上的困難。